L0-Norm and Total Variation for Wavelet Inpainting
نویسندگان
چکیده
In this paper, we suggest an algorithm to recover an image whose wavelet coefficients are partially lost. We propose a wavelet inpainting model by using L0-norm and the total variation (TV) minimization. Traditionally, L0-norm is replaced by L1-norm or L2-norm due to numerical difficulties. We use an alternating minimization technique to overcome these difficulties. In order to improve the numerical efficiency, we also apply a graph cut algorithm to solve the subproblem related to TV minimization. Numerical results will be given to demonstrate our advantages of the proposed algorithm.
منابع مشابه
Fast Dual Minimization of the Vectorial Total Variation Norm and Applications to Color Image Processing
We propose a regularization algorithm for color/vectorial images which is fast, easy to code and mathematically well-posed. More precisely, the regularization model is based on the dual formulation of the vectorial Total Variation (VTV) norm and it may be regarded as the vectorial extension of the dual approach defined by Chambolle in [13] for gray-scale/scalar images. The proposed model offers...
متن کاملFast Total Variation Wavelet Inpainting via Approximated Primal-Dual Hybrid Gradient (PDHG)
The primal-dual hybrid gradient (PDHG) algorithm has been successfully applied to a number of total variation (TV) based image reconstruction problems for fast numerical solutions. We show that PDHG can also effectively solve the computational problem of image inpainting in wavelet domain, where high quality images are to be recovered from incomplete wavelet coefficients due to lossy data trans...
متن کاملFast Total Variation Wavelet Inpainting via Approximated Primal-dual Hybrid Gradient Algorithm
The primal-dual hybrid gradient (PDHG) algorithm has been successfully applied to a number of total variation (TV) based image reconstruction problems for fast numerical solutions. We show that PDHG can also effectively solve the computational problem of image inpainting in wavelet domain, where high quality images are to be recovered from incomplete wavelet coefficients due to lossy data trans...
متن کاملSparse signal reconstruction on the sphere: implications of a new sampling theorem
A new sampling theorem on the sphere has been developed recently, reducing the number of samples required to represent a band-limited signal by a factor of two for equiangular sampling schemes. For signals sparse in a spatially localised measure, such as in a wavelet basis, overcomplete dictionary, or in the magnitude of their gradient, for example, a reduction in the number of samples required...
متن کاملCompressed sensing MRI with combined sparsifying transforms and smoothed l0 norm minimization
Undersampling the k-space is an efficient way to speed up the magnetic resonance imaging (MRI). Recently emerged compressed sensing MRI shows promising results. However, most of them only enforce the sparsity of images in single transform, e.g. total variation, wavelet, etc. In this paper, based on the principle of basis pursuit, we propose a new framework to combine sparsifying transforms in c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009